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Abstract

An artificial viscosity, originally designed for Eulerian schemes, is adapted
for use in arbitrary Lagrangian-Eulerian simulations. Changes to the Eule-
rian model, dubbed “hyperviscosity”, are discussed, which enable it to work
within a Lagrangian framework. New features include a velocity-weighted
grid scale and a generalized filtering procedure, applicable to either struc-
tured or unstructured grids. The model employs an artificial shear viscosity
for treating small-scale vorticity and an artificial bulk viscosity for shock
capturing. The model is based on the Navier-Stokes form of the viscous
stress tensor, including the diagonal rate-of-expansion tensor. A second-
order version of the model is presented, in which Laplacian operators act
on the velocity divergence and the grid-weighted strain-rate magnitude to
ensure that the velocity field remains smooth at the grid scale. The new
model is compared to a previously published Lagrangian artificial viscosity
on a variety of test problems.
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1. Introduction

For the past six decades, numerical simulations of shocks and turbulence
have been performed by time-marching the discretized Euler equations. The
inherent instability of these calculations motivated von Neumann and Richt-
myer [1] early on to introduce an artificial viscosity term into the equations
in order to help regularize the solutions. Since the 1950s, numerous artificial
damping terms have been proposed for simulating both shocks and turbu-
lence [2, 3, 4, 5, 6, 7, 8, 9]. The multiplicity of artificial viscosity models in
use today reflects the problem-specific nature of their formulations.
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The proper (frame-independent) form of the viscous stress tensor was
found by Claude-Louis Navier [10] and George Gabriel Stokes [11]. Stokes,
in particular, reasoned that viscous forces, resulting from relative motion
between fluid elements, are a function of the Jacobian of the velocity field.
The Jacobian matrix can be decomposed into symmetric and antisymmetric
parts, independent of the coordinate system. The antisymmetric part rep-
resents rigid rotation (no relative motion of fluid elements) and thus has no
associated viscous force. The symmetric part (the rate-of-strain tensor) can
be written in a frame-independent manner for an isotropic fluid as the sum of
a constant rate-of-expansion tensor and a traceless symmetric rate-of-shear
tensor. The most general linear relationship between the stress tensor and
the rate-of-strain tensor is then a linear combination of these two tensors.
The coefficient of the rate-of-expansion tensor is called “bulk viscosity” and
the rate-of-strain coefficient is called “shear viscosity”. Stokes hypothesized
that the trace of the total stress tensor ought to vanish and thus he assigned a
relationship between the two viscosity coefficients to make the bulk viscosity
zero.

Our purpose is to demonstrate that many problems with artificial vis-
cosity models can be solved by returning to the Navier-Stokes form of the
viscous stress tensor and retaining the bulk viscosity term. By modifying only
the coefficients of the frame-independent rate-of-strain and rate-of-expansion
tensors, both shocks and turbulence can be captured in a wide range of prob-
lems without adjusting coefficients or introducing limiters, switches or other
ad hoc fixes. We are particularly motivated by astrophysical and Inertial
Confinement Fusion (ICF) applications, where both shocks and turbulence
play important roles.

The organization of this paper is as follows. In Section 2 we present
the governing hydrodynamic equations in an arbitrary Lagrangian-Eulerian
(ALE) frame of reference. In Section 3 we discuss our Navier-Stokes-based
hyperviscosity model and briefly describe the well-known artificial viscosity
model of Caramana, Shashkov and Whalen (CSW) [12]. In Section 4 we
compare our hyperviscosity model to the CSW model on a variety of test
problems. Finally, we present our conclusions in Section 5.
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2. Governing Equations

The transport equations for mass, momentum and energy of a noncon-
ductive fluid are:

Dρ

Dt
= −ρ(∇ · u) = −ρ∂ui

∂xi
, (1)

ρ
Du

Dt
= ∇ · (−pI+Q) = − ∂p

∂xi
+
∂Qij

∂xj
, (2)

ρ
De

Dt
= −p(∇ · u) +Q : ∇u = −p∂ui

∂xi
+Qij

∂ui
∂xj

, (3)

where ρ is density, u is material velocity, p is pressure, I is the unit tensor, Q
is the viscous stress tensor and e is thermal energy. The material derivatives
of a scalar (ϕ) and vector (ϕ) on an ALE mesh are given by:

Dϕ

Dt
=
∂ϕ

∂t
+ (u− û) · ∇ϕ =

∂ϕ

∂t
+ (ui − ûi)

∂ϕ

∂xi
, (4)

Dϕ

Dt
=
∂ϕ

∂t
+ [(u− û) · ∇]ϕ =

∂ϕi
∂t

+ (uj − ûj)
∂ϕi
∂xj

, (5)

where û is the grid-node velocity and the partial time-derivatives are eval-
uated holding nodal coordinates fixed. For Newtonian fluids, the viscous
stress tensor is

Q = µ

[
2S− 2

3
(∇ · u)I

]
+ β(∇ · u)I = µ

[
2Sij −

2

3

∂uk
∂xk

δij

]
+ β

∂uk
∂xk

δij , (6)

where µ is the shear viscosity, β is the bulk viscosity and S is the symmetric
strain-rate tensor,

S =
1

2

[
∇u+ (∇u)†

]
= Sij =

1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
. (7)

For an ideal gamma-law gas,

p = (γ − 1)ρe , (8)

where γ = cp/cv is the ratio of specific heats (adiabatic index).
Equations (1)-(8) adequately describe a wide variety of flow phenom-

ena, including shocks, expansions, instabilities, turbulence, vortex dynamics,
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boundary layers, sound waves, etc. They constitute a closed set of equations
which, when combined with a complete set of initial/boundary conditions,
comprise a well-posed system. In many cases however, they admit solutions
that contain scales of motion too small to be resolved on any affordable mesh;
hence, the viscous terms must be modified to provide a grid-scale cut-off.

3. Artificial Viscosity

3.1. Hyperviscosity

A practice that has proven very effective in Eulerian calculations at re-
moving subgrid-scale features, while minimally affecting grid-scale physics,
is to add high-order grid-dependent components to the molecular transport
coefficients, i.e., to set:

µ = µF + µ∗ , (9)

β = βF + β∗ , (10)

where an F subscript denotes a physical fluid property and an asterisk de-
notes an artificial property [13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25]. It
is often the case, in simulating high-Reynolds-number flows on coarse grids,
that physical fluid properties are negligible compared to the requisite artifi-
cial properties. Therefore, in our present investigations we set µF = βF = 0
and limit the scope of this paper to an examination of just µ∗ and β∗.

Effective functional forms of µ∗ and β∗ can be deduced by analogy to the
scale-limiting behavior of the molecular viscosities. In a real fluid, molecules
transport and exchange their momentum in such a manner as to ensure
that the rate-of-strain tensor, S, is smoothed at the Kolmogorov scale [26].
In a simulated fluid, where the grid scale may be much larger than the
Kolmogorov scale, we can use µ∗ to limit the curvature of the strain rate
and hence ensure smoothness of the velocity field at this larger scale.

In high Mach number flows, bulk viscosity can have a significant influence
on the structure of shockwaves. Bulk viscosity effects arise from two separate
phenomena: rotational nonequilibrium (zero for monatomic gases) and finite
ranges of intermolecular forces (proportional to the volume fraction actually
occupied by the molecules). In a real fluid, bulk viscosity acts to ensure that
shocks are spread over a few mean-free paths. In a simulated fluid, we can
use β∗ to spread shocks over a few grid points.

In order to capture very strong shocks, β∗ must become large. This
raises the question as to whether such a shock-capturing scheme might be
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excessively dissipative for instabilities, turbulence or other vortical flow phe-
nomena. A good way to answer this question (in part) is to examine the
influence of bulk viscosity on the vorticity equation. The vorticity equation
for viscous compressible flow is

∂ω

∂t
+∇×(ω × u) =

∇ρ×∇p
ρ2

+∇×
(
∇ ·Q
ρ

)
, (11)

where ω ≡ ∇×u is the vorticity pseudovector. The bulk viscosity term on
the right-hand side of this equation is

∇×
{
1

ρ
∇ · [β (∇ · u) I]

}
= − 1

ρ2
∇ρ×∇ [β (∇ · u)] . (12)

At shocks,∇ρ aligns with∇ [β (∇ · u)]; hence, even a very large bulk viscosity
will have minimal effect on the vorticity field.

We have found the following second-order formulations of µ∗ and β∗ to
provide effective grid-scale smoothing of both turbulence and shocks:

µ∗ = Cµρ |∇2 (SL4)| , (13)

β∗ = Cβρ |∇2(∇ · u)|L4 , (14)

where S = (S : S)1/2 = (SijSji)
1/2 is the magnitude of the strain rate tensor,

L is a velocity-weighted grid scale (to be discussed) and Cµ and Cβ are
empirical coefficients, which we set to:

Cµ = 0.16 , (15)

Cβ =

{
2.2 if ∇ · u ≤ 0
0 if ∇ · u > 0

. (16)

All of the problems reported herein were run with these default values of the
model coefficients. For brevity, we refer to the use of (13) and (14) in (6) as
the “Hyper-Q” model.

3.2. Zone Length Scale

On uniform Cartesian grids, L is simply the distance between grid nodes.
On stretched grids however, L must be computed in a manner appropriate
for high-aspect-ratio zones. Since the purpose of hyperviscosity is to smooth
velocity gradients with respect to the grid scale, it makes sense to weight
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Figure 1: A grid cell with four edges: A, B, C, D and four nodes: a, b, c, d.

each cell edge by its associated velocity jump. We have found the following
formula to work well in practice,

L =

∑n
ξ=1 ||∆u||ξ∑n

ξ=1 ||∆u||ξ/Lξ + ϵ/∆t
, (17)

where n is the number of cell edges, Lξ is the length of an edge of index
ξ, ||∆u||ξ is the magnitude of the corresponding velocity jump, ∆t is the
time step and ϵ is a tiny number, required to avoid division by zero. Figure
1 provides an illustration of a (structured or unstructured) grid cell where
n = 4. The velocity jump associated with edge A would be computed as the
difference between the a and b nodal velocities; i.e., ||∆u||A = ||ub − ua||.
Equation (17) effectively selects the grid spacing normal to shocks, which
is necessary to ensure that shock profiles remain independent (in terms of
number of grid points) of their orientation with respect to the anisotropic
grid [19].

3.3. Filter Operator

The absolute value operators in (13) and (14) ensure that µ∗ and β∗ are
positive definite; however, they introduce cusps in the scalar fields. The cusps
are removed by applying a smoothing operator, denoted by an overbar, which
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Figure 2: An unstructured mesh with central zone “A” (α = 0), first neighbors “B” and
second neighbors “C”.

consists of a local average among neighboring grid cells. The zone filter can
be applied on any grid by tagging all of the zones sharing a node with the zone
in question, averaging over the tagged cells, then repeating the procedure;
i.e.,

ϕ′ =
1

N + 1

N∑
α=0

ϕα , ϕ =
1

N + 1

N∑
α=0

ϕ′
α , (18)

where N is the number of neighboring zones (excluding duplicates) to the
zone denoted by α = 0. For example, in Fig. 2, ϕ′ for cell A would consist
of an average over the A and B cells, and ϕ would also include the C cells.
Thus, the C and B/A cells are respectively given single and double weights
in the average.

Boundaries of the computational domain are treated by excluding edge
cells from the average; i.e., if any of the A, B or C cells reside on a global-
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domain boundary, they are not included in the summation (and N is reduced
accordingly). The boundary zones thus inherit µ∗ and β∗ from their inside
neighbors.

3.4. Turning Off β in Expansions

The Laplacian operators in (13) and (14) impart a squared-wavenumber
weighting to µ∗ and β∗ in Fourier space (hence the label “hyperviscosity”)
[13]. It has previously been demonstrated that such a weighting for µ∗ enables
it to function as an effective subgrid-scale turbulence model [14]. Higher-
order formulations can be employed by taking a series of Laplacians (by
applying a biharmonic or polyharmonic operator) and increasing the power
of L accordingly [15, 18]. These higher-order versions however, can only
be computed with correspondingly high-order-accurate differencing stencils,
which may be impractical on unstructured grids. The hyperviscosity terms
are designed to vanish wherever the flow is sufficiently smooth with respect
to the grid scale. The Laplacians serve to localize the artificial damping,
effectively turning it off in regions of constant shear or uniform compression.
On Eulerian grids, we have found the Laplacian(s) sufficient to automatically
turn off bulk viscosity in regions of expansion. On Lagrangian grids however,
where the zones inflate in regions of positive divergence (making L become
large), we find it necessary to manually turn off β∗ according to (16). We
find it unnecessary to apply this switch to µ∗ because Cµ << Cβ.

In (13), L4 appears in the argument of the Laplacian operator. This
has the effect of increasing artificial shear viscosity in regions of severe grid
distortion. We have found that this enables some Lagrangian calculations
to proceed further that they would if L4 were outside the Laplacian. On
uniform grids, it makes no difference whether L4 appears inside or outside
the Laplacian.

3.5. Viscous Stability Limit

Since µ and β can become large in the presence of strong shear or strong
shocks, the time step must be restricted to obey the viscous stability limit.
We employ a time-step control based on the Courant condition,

∆tCFL = σCFL MIN

(
∆xCFL
cs

)
, (19)

where ∆xCFL is a geometric length scale (the minimum of one-half the min-
imum edge length or the minimum distance between edge centers and the

8



zone center, whichever is smaller), cs is a generalized sound speed for the
zone, and σCFL is the CFL number (a constant). The square of the gen-
eralized sound speed consists of a thermodynamic component evaluated at
constant entropy (ψ) as well as a contribution due to the artificial viscosity.
It can be expressed as:

c2s =

(
∂p

∂ρ

)
ψ

+
pQ
ρ
. (20)

The pressure due to hyperviscosity is defined as:

pQ ≡ σ2
Q MAX

(
µ2, β2

) ∆x2CFL
ρL4

Q

, (21)

where σQ is a constant (set to 3.0 for all simulations herein) and LQ is related
to L and ∆xCFL by:

LQ = MAX(L, 0.01∆xCFL) . (22)

By computing cs and ∆tCFL with the artificial pressure pQ, the Courant
condition is modified to include the viscous restriction.

3.6. CSW Viscosity

In order to assess the relative performance of our hyperviscosity model
against a more standard artificial viscosity, we have implemented the Hyper-
Q model in an ICF code at LLNL. The code solves the Euler equations in a
Lagrangian reference frame using a staggered-mesh formalism and the ALE
hydrodynamics algorithm of Caramana et al. [27, 28]. Forces and velocities
are centered on mesh nodes, whereas density, internal energy, and pressure
are centered on mesh cells. A “mimetic” scheme of finite-volume operators
ensures that total energy is conserved to round-off error (see [27] for details).
The Euler equations are advanced via second-order Runge-Kutta integration.

In addition to artificial viscosity, the code employs hourglass control
(HGC) methods to help preserve mesh quality. The code has two HGC op-
tions: one based on the well-known Flanagan-Belytschko filtering approach
[29, 30], and another based on the “corner-pressures” method, of Caramana
and Shashkov [31]. The simulations presented herein were performed with the
corner-pressures (HGC) scheme. In this method, Lagrangian corner masses
(in 2D, a corner is the quadrilateral defined by a zone-center, a node, and
the two edge-centers adjacent to the node) develop pressures independent of
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the zone pressure. The corner pressures produce restoring forces that act to
reduce zone distortion; hence reducing hourglass modes. A danger of this
approach is the extra “stiffness” generated by the corner pressures, which
can inhibit physical motions. On smooth meshes, HGC-stiffening is typically
a small effect; however, it can become large if the Lagrangian grid becomes
highly distorted [31].

The code has long employed the edge-centered CSW viscosity model [12]
as its default artificial viscosity. For brevity, we will refer to this as the
“CSW-Q” model. The strengths and weaknesses of this model have been
explored by Campbell and Shashkov [32]. The CSW-Q model is formally an
edge-centered tensor, defined by the velocity gradient taken along an edge
of the mesh. It is based on the Kuropatenko scalar formulation, which relies
on the fluid’s sound speed and adiabatic index for scaling [33, 3]. Because
the velocity gradient operator has no information about velocity variations
in any directions other than along cell edges, CSW-Q is strongly dependent
upon the quality of the mesh. The CSW-Q model employs a limiter function,
designed to switch off the viscosity for uniform compression, rigid rotation
and along fronts of constant phase. For the comparisons presented in this
paper, we kept the limiter on and used the CSW-recommended values of
unity for both model constants (the linear and quadratic coefficients). The
CSW-Q model serves in place of the Navier-Stokes Q tensor in (2) and (3).

4. Results and Comparisons

4.1. Shu-Osher Shock Wave

As a first point of comparison between the CSW-Q and Hyper-Q models,
we consider the Shu-Osher problem, a canonical model of a one-dimensional
shock-turbulence interaction [34]. The nondimensional initial conditions are:
ρ = 3.857143, p = 10.33333 and u = 2.629369 for x < −4, and ρ = 1 +
0.2 sin(5x), p = 1 and u = 0 for x ≥ −4, with γ = 1.4. As the shock
propagates into the sinusoidal density field, it leaves a steeply oscillating
flow in the post-shock region.

Figure 3 shows the results of the two artificial viscosity models compared
to the converged solution. In one dimension, the CSW-Q and Hyper-Q mod-
els capture shocks in virtually identical fashion. They also reproduce the
post-shock oscillations with similar fidelity. In one dimension, grid cells col-
lapse to edges, which causes the cell- and edge-centered schemes to behave
similarly. In this and other one-dimensional shock problems (not shown),
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Figure 3: Density for Shu-Osher problem at t = 1.8. The Hyper-Q and CSW-Q results
were obtained from Lagrangian simulations using an initial grid resolution of ∆x = 0.05.

11



the shock profiles are very similar, with about 3 zones inside the shock.
Larger/smaller values of Cβ lead to thicker/thinner shocks. It has previously
been demonstrated that for a given value of Cβ, the shock is spread over a
fixed number of grid points, regardless of shock strength [13, 16].

4.2. Noh Implosion

The Noh problem tests a model’s ability to distinguish shocks from uni-
form adiabatic compression. It consists of a infinite-strength shock propagat-
ing outward into a converging flow [35, 36]. It is described nondimensionally
by:

ρ, ur, e =

{
[(γ + 1)/(γ − 1)]d , 0, 1/2 if r < rs

(1 + t/r)(d−1), −1, 0 if r ≥ rs
, (23)

rs = t(γ − 1)/2 , (24)

where d = 1, 2, 3 is the dimension of the problem (planar, cylindrical or
spherical), ur is radial (or x) velocity and rs is the radial (or x) position
of the shock. We ran the problem in cylindrical (RZ) and Cartesian (XY)
coordinates, with the latter performed both with and without symmetry
boundaries. The initial grid for the full XY case (without symmetry bound-
aries) is displayed in Fig. 4. This type of “butterfly” mesh is commonly used
for cylindrical and spherical problems in order to avoid the singularity at the
origin.

The simulations were run in a purely Lagrangian mode; i.e., û = u with
no remapping. The density fields at t = 0.6 are compared in Fig. 5. The post-
shock densities for the RZ (top) and XY (middle and bottom) cases should
be 64 and 16, respectively. The maximum Hyper-Q densities are reasonably
close to the exact values; however, the maximum CSW-Q densities are much
higher; i.e., 94.4 (before crashing), 29.6 and 31.0 for the top, middle and
bottom cases, respectively. Whereas, the Hyper-Q model preserves circular
symmetry reasonably well, CSW-Q generates enormous spikes in the cardinal
directions and minor spikes where the inner square mesh meets the outer
circular mesh. The CSW-Q spikes are exacerbated by the model’s limiter,
which turns off the artificial viscosity in regions of uniform compression.

The lower density near the origin (in all cases) is a manifestation of the
well-known “wall heating” problem [37]. This can be solved by adding an
artificial conductivity; however, that is beyond the scope of this paper. Ex-
cessive heating near the origin results in an increased sound speed which
causes the shock to run somewhat fast (it should be at a radius of 0.2 at
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Figure 4: Initial grid for XY Noh problem.
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Figure 5: Density for the Noh problem at t = 0.6. The CSW-Q results are on the left
and the Hyper-Q results are on the right. The top simulations were performed on a
square mesh in RZ coordinates (d = 3). The middle simulations were performed in XY
coordinates (d = 2) with symmetry boundaries. The bottom simulations were performed
in XY coordinates without symmetry boundaries.
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Figure 6: Density for the RZ Noh problem at t = 0.6 using double the resolution as in
Fig. 5. The CSW-Q results are on the left and the Hyper-Q results are on the right. The
CSW-Q model generates densities as large as 92.5 before crashing.

the times shown). By doubling the resolution (see Fig. 6) the error in shock
location is reduced by half, indicating first-order convergence. The CSW-Q
model fails sooner when the grid is refined.

4.3. Sedov Blast Wave

Whereas, the Noh problem is purely compressive, the Sedov-Taylor-von
Neumann blast wave [38, 39, 40] is strongly expansive. The nondimensional
initial conditions are: ρ = 1, u = 0 and e = eoδ(r) (where r is radius), and
we set eo = 1 and γ = 7/5. The location of the shock front is given by

rs(t) = (eo/α)
1/(2+d)t2/(2+d) , (25)

where d = 1, 2, 3 is the dimension of the problem and α is a parameter which
depends on the solution and can be obtained iteratively [38]. A challenging
aspect of this problem is that the blast wave leaves behind a vacuum at the
origin.

Once again, we ran the problem in Lagrangian fashion on a square RZ
mesh, a symmetric XY mesh and a full XY mesh. Results for the two models
are presented in Fig. 7. The Hyper-Q model preserves spherical/cylindrical
symmetry, whereas CSW-Q once again produces spikes along the axes, sim-
ilar to the Noh results.
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Figure 7: Density for Sedov blast wave. The CSW-Q results are on the left and the
Hyper-Q results are on the right. Top: solution in cylindrical (RZ) coordinates (d=3) at
t = 0.3. Middle: solution in Cartesian (XY) coordinates (d=2) at t = 0.5 using symmetry
boundaries. Bottom: solution in XY coordinates (d=2) at t = 0.5 on a full 360-degree
grid. 16
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Figure 8: Convergence of Hyper-Q model on exact solution for Sedov blast wave at t = 0.3
using e0 = 4.48333289847. The solid and dashed lines are the L1 and L2 error norms of the
simulation as functions of initial grid resolution. The dotted line corresponds to first-order
convergence

To ensure that the Hyper-Q model converges to the exact solution for a
strong source, we performed a refinement study with e0 = 4.48333289847.
With this initial energy, the analytical solution places the shock at r = 0.8
at t = 0.3. Figure 8 shows approximately first-order convergence for the
scheme.

4.4. Saltzman Piston

In order to test the robustness of the models for Lagrangian simulations
on nonideal grids, we consider the Saltzman piston problem, which consists
of an infinite-strength shockwave driven by a piston. A nondimensional box
of width 1.0 and height 0.1 contains a γ = 5/3 gas with ρ = 1 and e = 0.
At t = 0, the left wall begins moving to the right at a speed of 1.0 (while
the right wall remains fixed). The initial grid is distorted in order to test
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Figure 9: Initial grid for Saltzman piston problem.

the models’ ability to preserve the 1D solution on a nonideal mesh, which
is shown (at time zero) in Fig. 9. Prior to shock reflection, this problem
is identical to the 1D Noh problem with a change of reference frame. The
shock hits the right wall at t = 0.75, rebounds off the piston at t = 0.9 and
impacts the right wall again at t = 0.95. The density behind the shock prior
to the first, second and third bounces is 4, 10 and 20, respectively.

In Fig. 10, the two models are compared just before each bounce. As the
shock propagates through the distorted grid, it generates spurious vorticity.
This grid-seeded vorticity is damped to different degrees by the artificial
viscosity models. For the employed model coefficients, the CSW-Q model
damps vorticity more strongly than the Hyper-Q model.

A smoother grid for Hyper-Q could be obtained with a larger Cµ; how-
ever, this would come at the expense of increased dissipation in other prob-
lems (to be discussed). It is often possible to achieve improved results on
one-dimensional flows such as this by increasing the artificial damping. How-
ever, this is not necessarily desirable, since increased dissipation can degrade
results on vortical flows. A better option here would be to enable grid remap-
ping before the grid becoming so grossly distorted. The primary objective of
this problem is to demonstrate that both models enable Lagrangian simula-
tions to run robustly, even when the grid becomes severely distorted.

4.5. Taylor-Green Vortex

Thus far, all of the test cases have involved one-dimensional irrotational
flows, which have primarily exercised β∗. In order to test the efficacy of µ∗ at
capturing turbulence, we need a flow which activates all components of the
Q tensor in three dimensions. Therefore, as a final point of comparison, we
consider the Taylor-Green vortex [41], which is well-suited for testing artificial
shear viscosity. As the vortex stretches and bends in three dimensions, kinetic
energy cascades to smaller scales. Stretching and bending of vortex lines
constitute key energy transfer mechanisms in turbulent flows.
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Figure 10: Density for Saltzman piston at t = 0.7 (top), t = 0.85, (middle) and t = 0.93
(bottom). The CSW-Q solution is on the left and the Hyper-Q solution is on the right.
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The initial conditions for the problem are:

ρ = 1 ,
u = sin(x) cos(y) cos(z) ,
v = − cos(x) sin(y) cos(z) ,

w = 0 ,
p = po + [cos(2x) + cos(2y)][cos(2z) + 2]/16 ,

γ = 5/3 ,

(26)

where the pressure corresponds to the incompressible-flow solution. The
arbitrary constant po is set to 100 to make the Mach number very low, such
that the incompressible solution, at early time, can be used for comparison
[42]. The computational domain is a triply-symmetric π3 box on a 323 grid.
For both models, we ran the code in Eulerian mode (û = 0), ALE mode
(0 ≤ û ≤ u) and Lagrangian mode (û = u), in order to assess the interplay
between the remapping algorithm and the artificial viscosity. Results for
each case are illustrated in Fig. 11. This problem requires fairly aggressive
remapping in order to run very far; hence, the Eulerian and ALE results
appear similar. The Lagrangian simulations were run up to t = 2, shortly
after which they both crashed, due to severe mesh distortion.

As the flow evolves, vorticity becomes concentrated at smaller and smaller
scales, which makes the artificial viscosity become increasingly active. Fig-
ure 12 shows the time dependence of normalized total enstrophy, defined as
Ω(t)/Ω(0), where

Ω(t) ≡ 1

2

∫ π

0

∫ π

0

∫ π

0

ω · ω dx dy dz . (27)

Analysis based on Padé approximants and the behavior of the analyticity
strip, predicts Ω(t) will become far too large (possibly infinite) to capture
on a such a coarse grid [43]; nevertheless, the ability of a scheme to track
the analytical enstrophy curve, as well as the maximum enstrophy that a
scheme is able to generate, are stringent tests of resolving power. The results
indicate that the Hyper-Q model is much better at capturing small-scale
vorticity than CSW-Q; i.e., Hyper-Q is less dissipative than CSW-Q in all
three modes of operation. Furthermore, CSW-Q exhibits some sensitivity to
the remapping strategy (Eulerian versus ALE), whereas Hyper-Q does not.
As a side note, it is readily apparent that the remapping algorithm in the
Eulerian and ALE cases is very strongly dissipative.
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Figure 11: Vorticity for the Taylor-Green vortex. CSW-Q is on the left and Hyper-Q is on
the right. The top images are at t = 5 running in Eulerian mode. The middle images are
at t = 5 running in ALE mode. The bottom images are at t = 2 running in Lagrangian
mode. 21
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Figure 12: Normalized enstrophy versus time for the Taylor-Green vortex. Simulations
were performed on a π3 symmetric box with 323 grid points.
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Figure 13: Normalized kinetic energy versus time for the Taylor-Green vortex.

Another means of quantifying numerical dissipation in this flow is to
examine the evolution of normalized kinetic energy, i.e., K(t)/K(0), where

K(t) =
1

2

∫ π

0

∫ π

0

∫ π

0

ρu · u dx dy dz .

This is plotted in Figure 13 for each of the simulations. Since the flow is very
nearly incompressible, kinetic energy should be conserved. Once again we see
that CSW-Q is more dissipative in all three cases than Hyper-Q. The CSW-Q
model also generates some difference between the Eulerian and ALE results;
whereas, Hyper-Q appears insensitive to the remapping algorithm. The La-
grangian simulations preserve kinetic energy much better than the Eulerian
and ALE simulations; in fact, the remapping algorithm causes severe loss
of kinetic energy from the very beginning when only large-scale motions are
present and the flow is very smooth. This is a very serious problem; however,
the remapping algorithm is beyond the scope of our current investigations.
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Figure 14: Normalized enstrophy versus time for the Taylor-Green vortex. Simulations
were run in Eulerian mode with different background pressures. The Hyper-Q curves lie
on top of one another.

The excessive dissipation of vorticity and kinetic energy in the CSW-Q
model is partly due to its dependence on sound speed. To illustrate this point,
we repeated the Eulerian calculations with po = 1000 (recall that sound speed
is
√
γp/ρ). In the incompressible limit, the governing equations depend only

on the pressure gradient, not the pressure itself; hence, the simulation results
should not be sensitive to po (at these very low Mach numbers). Figure
14 shows the enstrophy results for the two models running at the different
background pressures. The Hyper-Q model is independent of the background
pressure/Mach number; whereas, the CSW-Q model becomes increasingly
dissipative as the Mach number goes to zero. The sound speed scaling of
the linear term in CSW-Q causes the artificial viscosity to blow up as the
Mach number goes to zero. This unphysical behavior is highly problematic
for turbulence calculations. Artificial viscosity should not depend on sound
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speed.

5. Conclusions

The Hyper-Q model performs similarly to the CSW-Q model on one-
dimensional shock problems, with each model spreading shocks over about 3
grid cells. In higher dimensions, the Hyper-Q model better preserves cylin-
drical/spherical symmetry on the Noh and Sedov problems. The CSW-Q
model dissipates vorticity much more strongly than the Hyper-Q model. The
strongly dissipative behavior of CSW-Q enables it to produce very robust re-
sults on the Saltzman piston; however, it leads to very poor results on the
Taylor-Green vortex.

The new Hyper-Q model employs the Navier-Stokes form of the viscous
stress tensor, including the bulk-viscosity term. This enables it to capture
both shocks and turbulence in a frame-independent manner. By basing the
bulk viscosity term on the curvature (Laplacian) of the divergence, rather
than on the divergence itself, shocks are distinguished from uniform compres-
sion without the need for detectors, limiters or switches. By modeling the
shear viscosity on the curvature of the strain-rate magnitude and grid-length
parameter, Lagrangian calculations are made more robust and vorticity is
captured on the grid without excessive dissipation.

Finally, unlike most other artificial-viscosity models for shock-capturing,
the Hyper-Q model is compatible with very low Mach number flow, since it
does not depend on sound speed. We believe the Hyper-Q model will prove
useful in ALE codes using either structured or unstructured meshes.
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